Package org.drip.specialfunction.derived
Class Legendre
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
org.drip.specialfunction.definition.LegendreEstimator
org.drip.specialfunction.derived.Legendre
public class Legendre extends LegendreEstimator
Legendre implements the Legendre Function from the 2F1 Hyper-geometric Function. The References
are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Legendre Constructor
- Retrieve the 2F1 Hyper-geometric Function Estimator
- Retrieve the Gamma Estimator
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Special Functions Derived using Others |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
-
Method Summary
Modifier and Type Method Description R1ToR1
gammaEstimator()
Retrieve the Gamma Estimatordouble
legendre(double z)
Evaluate the Legendre FunctionRegularHypergeometricEstimator
regularHypergeometricEstimator()
Retrieve the 2F1 Hyper-geometric Function EstimatorMethods inherited from class org.drip.specialfunction.definition.LegendreEstimator
alpha, ceta, evaluate
Methods inherited from class org.drip.specialfunction.definition.HypergeometricEstimator
hypergeometricParameters
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
Legendre
public Legendre(double alpha, double ceta, R2ToR1 logBetaEstimator, int quadratureCount, R1ToR1 gammaEstimator) throws java.lang.ExceptionLegendre Constructor- Parameters:
alpha
- Alphaceta
- CetalogBetaEstimator
- Log Beta EstimatorquadratureCount
- Quadrature CountgammaEstimator
- Gamma Estimator- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
regularHypergeometricEstimator
Retrieve the 2F1 Hyper-geometric Function Estimator- Returns:
- The 2F1 Hyper-geometric Function Estimator
-
gammaEstimator
Retrieve the Gamma Estimator- Returns:
- The Gamma Estimator
-
legendre
public double legendre(double z) throws java.lang.ExceptionDescription copied from class:LegendreEstimator
Evaluate the Legendre Function- Specified by:
legendre
in classLegendreEstimator
- Parameters:
z
- Z- Returns:
- The Legendre Function Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-