Package org.drip.specialfunction.derived
Class Legendre
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
org.drip.specialfunction.definition.LegendreEstimator
org.drip.specialfunction.derived.Legendre
public class Legendre extends LegendreEstimator
Legendre implements the Legendre Function from the 2F1 Hyper-geometric Function. The References
are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Legendre Constructor
- Retrieve the 2F1 Hyper-geometric Function Estimator
- Retrieve the Gamma Estimator
| Module | Product Core Module |
| Library | Fixed Income Analytics |
| Project | Special Function Implementation and Analysis |
| Package | Special Functions Derived using Others |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
-
Method Summary
Modifier and Type Method Description R1ToR1gammaEstimator()Retrieve the Gamma Estimatordoublelegendre(double z)Evaluate the Legendre FunctionRegularHypergeometricEstimatorregularHypergeometricEstimator()Retrieve the 2F1 Hyper-geometric Function EstimatorMethods inherited from class org.drip.specialfunction.definition.LegendreEstimator
alpha, ceta, evaluateMethods inherited from class org.drip.specialfunction.definition.HypergeometricEstimator
hypergeometricParametersMethods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidueMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
Legendre
public Legendre(double alpha, double ceta, R2ToR1 logBetaEstimator, int quadratureCount, R1ToR1 gammaEstimator) throws java.lang.ExceptionLegendre Constructor- Parameters:
alpha- Alphaceta- CetalogBetaEstimator- Log Beta EstimatorquadratureCount- Quadrature CountgammaEstimator- Gamma Estimator- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
regularHypergeometricEstimator
Retrieve the 2F1 Hyper-geometric Function Estimator- Returns:
- The 2F1 Hyper-geometric Function Estimator
-
gammaEstimator
Retrieve the Gamma Estimator- Returns:
- The Gamma Estimator
-
legendre
public double legendre(double z) throws java.lang.ExceptionDescription copied from class:LegendreEstimatorEvaluate the Legendre Function- Specified by:
legendrein classLegendreEstimator- Parameters:
z- Z- Returns:
- The Legendre Function Value
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-