Class RiemannSphereSpanner2F1

java.lang.Object
org.drip.specialfunction.group.RiemannSphereSpanner2F1

public class RiemannSphereSpanner2F1
extends java.lang.Object
RiemannSphereSpanner determines the Conformality and Tile Scheme of the Schwarz Singular Triangle Maps over the Riemann Sphere composed of the 2F1 Solutions. The References are:

  • Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
  • Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
  • Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
  • National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
  • Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
It provides the following functionality:
  • Generate the 2F1 Instance of the RiemannSphereSpanner

Module Computational Core Module
Library Function Analysis Library
Project Special Function Implementation and Analysis
Package Special Function Singularity Solution Group
Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    RiemannSphereSpanner2F1()  
  • Method Summary

    Modifier and Type Method Description
    static RiemannSphereSpanner Generate​(RegularHypergeometricEstimator regularHypergeometricEstimator, double[] connectionCoefficientArray)
    Generate the 2F1 Instance of the RiemannSphereSpanner

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • RiemannSphereSpanner2F1

      public RiemannSphereSpanner2F1()
  • Method Details

    • Generate

      public static final RiemannSphereSpanner Generate​(RegularHypergeometricEstimator regularHypergeometricEstimator, double[] connectionCoefficientArray)
      Generate the 2F1 Instance of the RiemannSphereSpanner
      Parameters:
      regularHypergeometricEstimator - Regular Hyper-geometric Estimator
      connectionCoefficientArray - Array of the Singularity Point Connection Coefficients
      Returns:
      The 2F1 Instance of the RiemannSphereSpanner