Package org.drip.specialfunction.group
Class RiemannSphereSpanner2F1
java.lang.Object
org.drip.specialfunction.group.RiemannSphereSpanner2F1
public class RiemannSphereSpanner2F1
extends java.lang.Object
RiemannSphereSpanner determines the Conformality and Tile Scheme of the Schwarz Singular Triangle
Maps over the Riemann Sphere composed of the 2F1 Solutions. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Generate the 2F1 Instance of the RiemannSphereSpanner
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Singularity Solution Group |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RiemannSphereSpanner2F1()
-
Method Summary
Modifier and Type Method Description static RiemannSphereSpanner
Generate(RegularHypergeometricEstimator regularHypergeometricEstimator, double[] connectionCoefficientArray)
Generate the 2F1 Instance of the RiemannSphereSpannerMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RiemannSphereSpanner2F1
public RiemannSphereSpanner2F1()
-
-
Method Details
-
Generate
public static final RiemannSphereSpanner Generate(RegularHypergeometricEstimator regularHypergeometricEstimator, double[] connectionCoefficientArray)Generate the 2F1 Instance of the RiemannSphereSpanner- Parameters:
regularHypergeometricEstimator
- Regular Hyper-geometric EstimatorconnectionCoefficientArray
- Array of the Singularity Point Connection Coefficients- Returns:
- The 2F1 Instance of the RiemannSphereSpanner
-