Package org.drip.validation.distance
Class ImportanceWeight
java.lang.Object
org.drip.validation.distance.ImportanceWeight
public class ImportanceWeight
extends java.lang.Object
ImportanceWeight weighs the Importance of each Empirical Hypothesis Outcome.
- Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for Back-testing Credit Exposure Models https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 eSSRN
- Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
- Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit Pricing Palgrave Macmillan
- Wikipedia (2018): Probability Integral Transform https://en.wikipedia.org/wiki/Probability_integral_transform
- Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
- Module = Computational Core Module
- Library = Model Validation Analytics Library
- Project = Risk Factor and Hypothesis Validation, Evidence Processing, and Model Testing
- Package = Hypothesis Target Distance Test Builders
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description ImportanceWeight(R1Univariate r1Univariate, double positiveExpectation)
ImportanceWeight Constructor -
Method Summary
Modifier and Type Method Description static ImportanceWeight
Normal(R1UnivariateNormal r1UnivariateNormal)
Construct the Importance Weight Version based on Normal Distributiondouble
positiveExpectation()
Retrieve the Positive Expectationdouble
quantileLoading(double q)
Retrieve the Importance Weight Loading given the QuantileR1Univariate
r1Univariate()
Retrieve the Underlying R1 DistributionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
ImportanceWeight
public ImportanceWeight(R1Univariate r1Univariate, double positiveExpectation) throws java.lang.ExceptionImportanceWeight Constructor- Parameters:
r1Univariate
- The Underlying R1 DistributionpositiveExpectation
- The Positive Expectation- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
Normal
Construct the Importance Weight Version based on Normal Distribution- Parameters:
r1UnivariateNormal
- R1 Normal Distribution- Returns:
- The Importance Weight
-
positiveExpectation
public double positiveExpectation()Retrieve the Positive Expectation- Returns:
- The Positive Expectation
-
r1Univariate
Retrieve the Underlying R1 Distribution- Returns:
- The Underlying R1 Distribution
-
quantileLoading
public double quantileLoading(double q) throws java.lang.ExceptionRetrieve the Importance Weight Loading given the Quantile- Parameters:
q
- The Quantile- Returns:
- The Importance Weight Loading
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-