public abstract class RdToR1
extends java.lang.Object
Modifier and Type | Method and Description |
---|---|
double |
derivative(double[] adblVariate,
int iVariateIndex,
int iOrder)
Calculate the derivative as a double
|
Differential |
differential(double[] adblVariate,
int iVariateIndex,
int iOrder)
Calculate the Differential
|
abstract int |
dimension()
Retrieve the Dimension of the Input Variate
|
abstract double |
evaluate(double[] adblVariate)
Evaluate for the given Input Variates
|
UnitVector |
gradient(double[] adblVariate)
Construct an Instance of the Unit Gradient Vector at the given Input Variates
|
double |
gradientModulus(double[] adblVariate)
Compute the Modulus of the Gradient at the Specified Variate location
|
RdToR1 |
gradientModulusFunction()
Generate the Gradient Modulus Function
|
double[][] |
hessian(double[] adblVariate)
Evaluate The Hessian for the given Input Variates
|
double |
integrate(double[] adblLeftEdge,
double[] adblRightEdge)
Integrate over the given Input Range Using Uniform Monte-Carlo
|
double[] |
jacobian(double[] adblVariate)
Evaluate the Jacobian for the given Input Variates
|
VariateOutputPair |
maxima(double[] adblVariateLeft,
double[] adblVariateRight)
Compute the Maximum VOP within the Variate Array Range Using Uniform Monte-Carlo
|
VariateOutputPair |
minima(double[] adblVariateLeft,
double[] adblVariateRight)
Compute the Minimum VOP within the Variate Array Range Using Uniform Monte-Carlo
|
static boolean |
ValidateInput(double[] adblVariate)
Validate the Input Double Array
|
public static final boolean ValidateInput(double[] adblVariate)
adblVariate
- The Input Double Arraypublic abstract int dimension()
public abstract double evaluate(double[] adblVariate) throws java.lang.Exception
adblVariate
- Array of Input Variatesjava.lang.Exception
- Thrown if the Evaluation cannot be donepublic Differential differential(double[] adblVariate, int iVariateIndex, int iOrder)
adblVariate
- Variate Array at which the derivative is to be calculatediVariateIndex
- Index of the Variate whose Derivative is to be computediOrder
- Order of the derivative to be computedpublic double derivative(double[] adblVariate, int iVariateIndex, int iOrder)
adblVariate
- Variate Array at which the derivative is to be calculatediVariateIndex
- Index of the Variate whose Derivative is to be computediOrder
- Order of the derivative to be computedpublic double[] jacobian(double[] adblVariate)
adblVariate
- Array of Input Variatespublic UnitVector gradient(double[] adblVariate)
adblVariate
- Array of Input Variatespublic double[][] hessian(double[] adblVariate)
adblVariate
- Array of Input Variatespublic double integrate(double[] adblLeftEdge, double[] adblRightEdge) throws java.lang.Exception
adblLeftEdge
- Array of Input Left EdgeadblRightEdge
- Array of Input Right Edgejava.lang.Exception
- Thrown if the Integration cannot be donepublic VariateOutputPair maxima(double[] adblVariateLeft, double[] adblVariateRight)
adblVariateLeft
- The Range Left End ArrayadblVariateRight
- The Range Right End Arraypublic VariateOutputPair minima(double[] adblVariateLeft, double[] adblVariateRight)
adblVariateLeft
- The Range Left End ArrayadblVariateRight
- The Range Right End Arraypublic double gradientModulus(double[] adblVariate) throws java.lang.Exception
adblVariate
- The Variate Array locationjava.lang.Exception
- Thrown if the Inputs are Invalidpublic RdToR1 gradientModulusFunction()