Modifier and Type | Method and Description |
---|---|
RdToR1 |
RdToR1.gradientModulusFunction()
Generate the Gradient Modulus Function
|
Modifier and Type | Class and Description |
---|---|
class |
AffineBoundMultivariate
AffineBoundMultivariate implements a Bounded Planar Linear R^d To R^1 Function.
|
class |
AffineMultivariate
AffineMultivariate implements a Planar Linear R^d To R^1 Function using a Multivariate Vector.
|
class |
CovarianceEllipsoidMultivariate
CovarianceEllipsoidMultivariate implements an R^d To R^1 Co-variance Estimate of the specified
Distribution.
|
class |
LagrangianMultivariate
LagrangianMultivariate implements an R^d To R^1 Multivariate Function along with the specified Set of
Equality Constraints.
|
class |
RiskObjectiveUtilityMultivariate
RiskObjectiveUtilityMultivariate implements the Risk Objective R^d To R^1 Multivariate Function used in
Portfolio Allocation.
|
Modifier and Type | Method and Description |
---|---|
RdToR1[] |
LagrangianMultivariate.constraintFunctions()
Retrieve the Array of the Constraint R^d To R^1 Function Instances
|
RdToR1 |
LagrangianMultivariate.objectiveFunction()
Retrieve the Objective R^d To R^1 Function Instance
|
Constructor and Description |
---|
LagrangianMultivariate(RdToR1 RdToR1Objective,
RdToR1[] aRdToR1EqualityConstraint)
LagrangianMultivariate Constructor
|
LagrangianMultivariate(RdToR1 RdToR1Objective,
RdToR1[] aRdToR1EqualityConstraint)
LagrangianMultivariate Constructor
|
Modifier and Type | Method and Description |
---|---|
LineEvolutionVerifierMetrics |
WolfeEvolutionVerifier.metrics(UnitVector uvTargetDirection,
double[] adblCurrentVariate,
RdToR1 funcRdToR1,
double dblStepLength) |
abstract LineEvolutionVerifierMetrics |
LineEvolutionVerifier.metrics(UnitVector uvTargetDirection,
double[] adblCurrentVariate,
RdToR1 funcRdToR1,
double dblStepLength)
Generate the Verifier Metrics for the Specified Inputs
|
LineEvolutionVerifierMetrics |
CurvatureEvolutionVerifier.metrics(UnitVector uvTargetDirection,
double[] adblCurrentVariate,
RdToR1 funcRdToR1,
double dblStepLength) |
LineEvolutionVerifierMetrics |
ArmijoEvolutionVerifier.metrics(UnitVector uvTargetDirection,
double[] adblCurrentVariate,
RdToR1 funcRdToR1,
double dblStepLength) |
boolean |
LineEvolutionVerifier.verify(UnitVector uvTargetDirection,
double[] adblCurrentVariate,
RdToR1 funcRdToR1,
double dblStepLength)
Verify if the specified Inputs satisfy the Criterion
|
Modifier and Type | Method and Description |
---|---|
RdToR1[] |
InteriorFixedPointFinder.inequalityConstraints()
Retrieve the Array of Inequality Constraints
|
RdToR1[] |
BarrierFixedPointFinder.inequalityConstraints()
Retrieve the Array of Inequality Constraints
|
RdToR1 |
FixedRdFinder.objectiveFunction()
Retrieve the Objective Function
|
RdToR1 |
BarrierFixedPointFinder.objectiveFunction()
Retrieve the Objective Function
|
Constructor and Description |
---|
BarrierFixedPointFinder(RdToR1 rdToR1ObjectiveFunction,
RdToR1[] aRdToR1InequalityConstraint,
InteriorPointBarrierControl ipbc,
LineStepEvolutionControl lsec)
BarrierFixedPointFinder Constructor
|
BarrierFixedPointFinder(RdToR1 rdToR1ObjectiveFunction,
RdToR1[] aRdToR1InequalityConstraint,
InteriorPointBarrierControl ipbc,
LineStepEvolutionControl lsec)
BarrierFixedPointFinder Constructor
|
InteriorFixedPointFinder(RdToR1 rdToR1ObjectiveFunction,
RdToR1[] aRdToR1InequalityConstraint,
LineStepEvolutionControl lsec,
ConvergenceControl cc,
double dblBarrierStrength)
InteriorFixedPointFinder Constructor
|
InteriorFixedPointFinder(RdToR1 rdToR1ObjectiveFunction,
RdToR1[] aRdToR1InequalityConstraint,
LineStepEvolutionControl lsec,
ConvergenceControl cc,
double dblBarrierStrength)
InteriorFixedPointFinder Constructor
|
NewtonFixedPointFinder(RdToR1 rdToR1ObjectiveFunction,
LineStepEvolutionControl lsec,
ConvergenceControl cc)
NewtonFixedPointFinder Constructor
|
Modifier and Type | Method and Description |
---|---|
RdToR1 |
IntegralOperator.kernelOperatorFunction()
Retrieve the R^d To R^1 Kernel Operator Function
|
Constructor and Description |
---|
IntegralOperator(SymmetricRdToNormedR1Kernel kernel,
RdToR1 funcRdToR1,
R1Normed r1OperatorOutput)
IntegralOperator Constructor
|
Modifier and Type | Method and Description |
---|---|
RdToR1 |
RegularizationFunction.rdTor1()
Retrieve the R^d To R^1 Regularization Function
|
Modifier and Type | Method and Description |
---|---|
static RegularizerRdToR1 |
RegularizerBuilder.RdCombinatorialToR1Continuous(RdToR1 funcRegularizerRdToR1,
NormedRdCombinatorialToR1Continuous funcSpaceRdToR1,
double dblLambda)
Construct an Instance of R^d Combinatorial To R^1 Continuous Regularizer
|
static RegularizerRdToR1 |
RegularizerBuilder.RdContinuousToR1Continuous(RdToR1 funcRegularizerRdToR1,
NormedRdContinuousToR1Continuous funcSpaceRdToR1,
double dblLambda)
Construct an Instance of R^d Continuous To R^1 Continuous Regularizer
|
double |
RegularizerRdToR1.structuralLoss(RdToR1 funcRdToR1,
double[][] aadblX)
Compute the Regularization Sample Structural Loss
|
double |
RegularizerRdContinuousToR1Continuous.structuralLoss(RdToR1 funcRdToR1,
double[][] aadblX) |
double |
RegularizerRdCombinatorialToR1Continuous.structuralLoss(RdToR1 funcRdToR1,
double[][] aadblX) |
double |
RegularizerRdToR1.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY)
Compute the Regularization Sample Structural Loss
|
double |
RegularizerRdContinuousToR1Continuous.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY) |
double |
RegularizerRdCombinatorialToR1Continuous.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY) |
static RegularizerRdToR1 |
RegularizerBuilder.ToRdContinuous(RdToR1 funcRegularizerRdToR1,
RdNormed rdInput,
R1Continuous r1ContinuousOutput,
double dblLambda)
Construct an Instance of R^d Combinatorial/Continuous To R^1 Continuous Regularizer
|
Constructor and Description |
---|
RegularizationFunction(R1ToR1 regR1ToR1,
RdToR1 regRdToR1,
double dblLambda)
RegularizationFunction Constructor
|
RegularizerRdCombinatorialToR1Continuous(RdToR1 funcRegularizerRdToR1,
RdCombinatorialBanach rdCombinatorialInput,
R1Continuous r1ContinuousOutput,
double dblLambda)
RegularizerRdCombinatorialToR1Continuous Function Space Constructor
|
RegularizerRdContinuousToR1Continuous(RdToR1 funcRdToR1,
RdContinuousBanach rdContinuousInput,
R1Continuous r1ContinuousOutput,
double dblLambda)
RegularizerRdContinuousToR1Continuous Function Space Constructor
|
Modifier and Type | Class and Description |
---|---|
class |
EmpiricalPenaltySupremumEstimator
EmpiricalPenaltySupremumEstimator contains the Implementation of the Empirical Penalty Supremum Estimator
dependent on Multivariate Random Variables where the Multivariate Function is a Linear Combination of
Bounded Univariate Functions acting on each Random Variate.
|
Modifier and Type | Method and Description |
---|---|
RdToR1 |
EmpiricalPenaltySupremumEstimator.supremumRdToR1(double[][] aadblX)
Retrieve the Supremum R^d To R^1 Function Instance for the specified Variate Sequence
|
Modifier and Type | Method and Description |
---|---|
double |
LpLossLearner.empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
LipschitzLossLearner.empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
L1LossLearner.empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Loss
|
double |
LpLossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
LipschitzLossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
L1LossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
GeneralizedLearner.regularizedLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.regularizedLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)
|
double |
GeneralizedLearner.regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
double |
GeneralizedLearner.structuralLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvvi) |
double |
EmpiricalLearningMetricEstimator.structuralLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvvi)
Compute the Structural Sample Loss
|
double |
GeneralizedLearner.structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
Modifier and Type | Class and Description |
---|---|
class |
KernelRdDecisionFunction
KernelRdDecisionFunction implements the Kernel-based R^d Decision Function-Based SVM Functionality for
Classification and Regression.
|
class |
LinearRdDecisionFunction
LinearRdDecisionFunction implements the Linear R^d Decision Function-Based SVM Functionality for
Classification and Regression.
|
class |
RdDecisionFunction
RdDecisionFunction exposes the R^d Decision-Function Based SVM Functionality for Classification and
Regression.
|
Modifier and Type | Method and Description |
---|---|
RdToR1 |
R1Multivariate.densityRdToR1()
Convert the Multivariate Density into an RdToR1 Functions Instance
|
Modifier and Type | Method and Description |
---|---|
double |
R1Multivariate.expectation(RdToR1 funcRdToR1)
Compute the Expectation of the Specified R^d To R^1 Function Instance
|
Modifier and Type | Class and Description |
---|---|
class |
OptimizationFramework
OptimizationFramework holds the Non Linear Objective Function and the Collection of Equality and the
Inequality Constraints that correspond to the Optimization Setup.
|
Modifier and Type | Method and Description |
---|---|
RdToR1[] |
OptimizationFramework.activeConstraints(double[] adblVariate)
Retrieve the Array of Active Constraints
|
RdToR1[] |
OptimizationFramework.equalityConstraint()
Retrieve the Array of R^d To R^1 Equality Constraint Functions
|
RdToR1[] |
OptimizationFramework.inequalityConstraint()
Retrieve the Array of R^d To R^1 Inequality Constraint Functions
|
RdToR1 |
OptimizationFramework.objectiveFunction()
Retrieve the R^d To R^1 Objective Function
|
Constructor and Description |
---|
OptimizationFramework(RdToR1 rdToR1Objective,
RdToR1[] aRdToR1EqualityConstraint,
RdToR1[] aRdToR1InequalityConstraint)
OptimizationFramework Constructor
|
OptimizationFramework(RdToR1 rdToR1Objective,
RdToR1[] aRdToR1EqualityConstraint,
RdToR1[] aRdToR1InequalityConstraint)
OptimizationFramework Constructor
|
OptimizationFramework(RdToR1 rdToR1Objective,
RdToR1[] aRdToR1EqualityConstraint,
RdToR1[] aRdToR1InequalityConstraint)
OptimizationFramework Constructor
|
Modifier and Type | Method and Description |
---|---|
RdToR1[] |
PortfolioConstructionParameters.equalityConstraintRdToR1(AssetUniverseStatisticalProperties ausp)
Retrieve the Equality Constraint R^d To R^1 Corresponding to the Specified Constraint Type
|
RdToR1 |
PortfolioConstructionParameters.fullyInvestedConstraint()
Retrieve the Fully Invested Equality Constraint
|
RdToR1 |
PortfolioConstructionParameters.returnsConstraint(AssetUniverseStatisticalProperties ausp)
Retrieve the Mandatory Returns Constraint
|
RdToR1 |
CustomRiskUtilitySettings.riskObjectiveUtility(java.lang.String[] astrAssetID,
AssetUniverseStatisticalProperties ausp)
Retrieve the Custom Risk Objective Utility Multivariate
|
Modifier and Type | Class and Description |
---|---|
class |
GlivenkoCantelliFunctionSupremum
GlivenkoCantelliFunctionSupremum contains the Implementation of the Supremum Class Objective Function
dependent on Multivariate Random Variables where the Multivariate Function is a Linear Combination of Bounded
Univariate Functions acting on each Random Variate.
|
class |
GlivenkoCantelliUniformDeviation
GlivenkoCantelliUniformDeviation contains the Implementation of the Bounded Objective Function dependent
on Multivariate Random Variables where the Multivariate Function is a Linear Combination of Bounded
Univariate Functions acting on each Random Variate.
|
class |
KernelDensityEstimationL1
KernelDensityEstimationL1 implements the L1 Error Scheme Estimation for a Multivariate Kernel Density
Estimator with Focus on establishing targeted Variate-Specific and Agnostic Bounds.
|
class |
LongestCommonSubsequence
LongestCommonSubsequence contains Variance Bounds on the Critical Measures of the Longest Common
Subsequence between two Strings.
|
class |
OrientedPercolationFirstPassage
OrientedPercolationFirstPassage contains Variance Bounds on the Critical Measures of the Standard Problem
of First Passage Time in Oriented Percolation.
|
Modifier and Type | Class and Description |
---|---|
class |
BoundedMultivariateRandom
BoundedMultivariateRandom contains the Implementation of the Bounded Objective Function dependent on
Multivariate Random Variables.
|
class |
FlatMultivariateRandom
FlatMultivariateRandom contains the Implementation of the Flat Objective Function dependent on
Multivariate Random Variables.
|
class |
MultivariateRandom
MultivariateRandom contains the implementation of the objective Function dependent on Multivariate Random
Variables.
|
Modifier and Type | Method and Description |
---|---|
RdToR1 |
EfronSteinMetrics.function()
Retrieve the Multivariate Objective Function
|
Modifier and Type | Method and Description |
---|---|
RdToR1[] |
NormedRdToNormedR1Finite.functionRdToR1Set()
Retrieve the Finite Class of R^d To R^1 Functions
|
Modifier and Type | Method and Description |
---|---|
double |
RdNormed.borelMeasureSpaceExpectation(RdToR1 funcRdToR1)
Compute the Borel Measure Expectation for the specified R^d To R^1 Function over the full Input Space
|
double |
RdContinuousBanach.borelMeasureSpaceExpectation(RdToR1 funcRdToR1) |
double |
RdCombinatorialBanach.borelMeasureSpaceExpectation(RdToR1 funcRdToR1) |
Modifier and Type | Method and Description |
---|---|
RdToR1 |
NormedRdToNormedR1.function()
Retrieve the Underlying RdToR1 Function
|
Constructor and Description |
---|
NormedRdCombinatorialToR1Continuous(RdCombinatorialBanach rdCombinatorialInput,
R1Continuous r1ContinuousOutput,
RdToR1 funcRdToR1)
NormedRdCombinatorialToR1Continuous Function Space Constructor
|
NormedRdContinuousToR1Continuous(RdContinuousBanach rdContinuousInput,
R1Continuous r1ContinuousOutput,
RdToR1 funcRdToR1)
NormedRdContinuousToR1Continuous Function Space Constructor
|