public class EmpiricalPenaltySupremumEstimator extends BoundedMultivariateRandom
Modifier and Type | Field and Description |
---|---|
static int |
SUPREMUM_PENALTY_EMPIRICAL_LOSS
Supremum Penalty computed off of Empirical Loss
|
static int |
SUPREMUM_PENALTY_EMPIRICAL_RISK
Supremum Penalty computed off of Empirical Risk
|
static int |
SUPREMUM_PENALTY_REGULARIZED_LOSS
Supremum Penalty computed off of Regularized Loss
|
static int |
SUPREMUM_PENALTY_REGULARIZED_RISK
Supremum Penalty computed off of Regularized Risk
|
static int |
SUPREMUM_PENALTY_STRUCTURAL_LOSS
Supremum Penalty computed off of Structural Loss
|
static int |
SUPREMUM_PENALTY_STRUCTURAL_RISK
Supremum Penalty computed off of Structural Risk
|
Constructor and Description |
---|
EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode,
EmpiricalLearningMetricEstimator elme,
GeneralizedValidatedVector gvviY,
R1R1 distR1R1,
RdR1 distRdR1)
EmpiricalPenaltySupremumEstimator Constructor
|
Modifier and Type | Method and Description |
---|---|
int |
dimension()
Retrieve the Dimension of the Input Variate
|
EmpiricalLearningMetricEstimator |
elme()
Retrieve the Empirical Learning Metric Estimator Instance
|
GeneralizedValidatedVector |
empiricalOutcomes()
Retrieve the Validated Outcome Instance
|
double |
evaluate(double[] adblX)
Evaluate for the given Input Variates
|
double |
evaluate(double[][] aadblX)
Retrieve the Worst-case Loss over the Multivariate Sequence
|
EmpiricalPenaltySupremum |
supremum(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^1/R^d Input Space
|
int |
supremumPenaltyLossMode()
The Supremum Penalty Loss Mode Flag
|
EmpiricalPenaltySupremum |
supremumR1(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^1 Input Space
|
R1ToR1 |
supremumR1ToR1(double[] adblX)
Retrieve the Supremum R^1 To R^1 Function Instance for the specified Variate Sequence
|
EmpiricalPenaltySupremum |
supremumRd(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^d Input Space
|
RdToR1 |
supremumRdToR1(double[][] aadblX)
Retrieve the Supremum R^d To R^1 Function Instance for the specified Variate Sequence
|
double |
targetVariateVarianceBound(int iTargetVariateIndex)
Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variate
|
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetrics
derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
public static final int SUPREMUM_PENALTY_EMPIRICAL_LOSS
public static final int SUPREMUM_PENALTY_STRUCTURAL_LOSS
public static final int SUPREMUM_PENALTY_REGULARIZED_LOSS
public static final int SUPREMUM_PENALTY_EMPIRICAL_RISK
public static final int SUPREMUM_PENALTY_STRUCTURAL_RISK
public static final int SUPREMUM_PENALTY_REGULARIZED_RISK
public EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode, EmpiricalLearningMetricEstimator elme, GeneralizedValidatedVector gvviY, R1R1 distR1R1, RdR1 distRdR1) throws java.lang.Exception
iSupremumPenaltyLossMode
- Supremum Loss Penalty Modeelme
- The Empirical Learning Metric Estimator InstancegvviY
- The Validated Outcome InstancedistR1R1
- R^1 R^1 Multivariate MeasuredistRdR1
- R^d R^1 Multivariate Measurejava.lang.Exception
- Thrown if the Inputs are Invalidpublic int supremumPenaltyLossMode()
public EmpiricalLearningMetricEstimator elme()
public GeneralizedValidatedVector empiricalOutcomes()
public EmpiricalPenaltySupremum supremumR1(GeneralizedValidatedVector gvviX)
gvviX
- The R^1 Input Spacepublic EmpiricalPenaltySupremum supremumRd(GeneralizedValidatedVector gvviX)
gvviX
- The R^d Input Spacepublic EmpiricalPenaltySupremum supremum(GeneralizedValidatedVector gvviX)
gvviX
- The R^1/R^d Input Spacepublic R1ToR1 supremumR1ToR1(double[] adblX)
adblX
- The Predictor Instancepublic RdToR1 supremumRdToR1(double[][] aadblX)
aadblX
- The Predictor Instancepublic int dimension()
RdToR1
public double evaluate(double[] adblX) throws java.lang.Exception
RdToR1
public double evaluate(double[][] aadblX) throws java.lang.Exception
aadblX
- The Multivariate Arrayjava.lang.Exception
- Thrown if the Worst-Case Loss cannot be computedpublic double targetVariateVarianceBound(int iTargetVariateIndex) throws java.lang.Exception
BoundedMultivariateRandom
targetVariateVarianceBound
in class BoundedMultivariateRandom
iTargetVariateIndex
- The Index corresponding to the Variate on which the Bound is soughtjava.lang.Exception
- Thrown if the Inputs are invalid