public interface EmpiricalLearningMetricEstimator
Modifier and Type | Method and Description |
---|---|
double |
empiricalLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Loss
|
double |
empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Loss
|
double |
empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
NormedRxToNormedR1Finite |
functionClass()
Retrieve the Underlying Learner Function Class
|
double |
lossSampleCoveringNumber(GeneralizedValidatedVector gvvi,
double dblEpsilon,
boolean bSupremum)
Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based
|
double |
regularizedLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)
|
double |
regularizedLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)
|
double |
regularizedRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
double |
regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
RegularizationFunction |
regularizerFunction()
Retrieve the Regularizer Function
|
double |
structuralLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvvi)
Compute the Structural Sample Loss
|
double |
structuralLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvvi)
Compute the Structural Sample Loss
|
double |
structuralRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
double |
structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
EmpiricalPenaltySupremum |
supremumEmpiricalLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Loss
|
EmpiricalPenaltySupremum |
supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
supremumRegularizedLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Loss
|
EmpiricalPenaltySupremum |
supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
supremumStructuralLoss(GeneralizedValidatedVector gvviX)
Compute the Supremum Structural Sample Loss
|
EmpiricalPenaltySupremum |
supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
EmpiricalPenaltySupremum |
supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
NormedRxToNormedR1Finite functionClass()
RegularizationFunction regularizerFunction()
double lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Inputs are Invaliddouble empiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Loss cannot be computeddouble empiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Loss cannot be computedEmpiricalPenaltySupremum supremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Empirical Sample Loss cannot be computeddouble structuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi) throws java.lang.Exception
funcLearnerR1ToR1
- The R^1 To R^1 Learner Functiongvvi
- The Validated Predictor Instancejava.lang.Exception
- Thrown if the Structural Loss cannot be computeddouble structuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi) throws java.lang.Exception
funcLearnerRdToR1
- The R^d To R^1 Learner Functiongvvi
- The Validated Predictor Instancejava.lang.Exception
- Thrown if the Structural Loss cannot be computedEmpiricalPenaltySupremum supremumStructuralLoss(GeneralizedValidatedVector gvviX) throws java.lang.Exception
gvviX
- The Validated Predictor Instancejava.lang.Exception
- Thrown if the Supremum Structural Sample Loss cannot be computeddouble regularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Loss cannot be computeddouble regularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Loss cannot be computedEmpiricalPenaltySupremum supremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Regularized Sample Loss cannot be computeddouble empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computeddouble empiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computedEmpiricalPenaltySupremum supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Empirical Sample Loss cannot be computedEmpiricalPenaltySupremum supremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Empirical Sample Loss cannot be computeddouble structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Structural Risk cannot be computeddouble structuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Structural Risk cannot be computedEmpiricalPenaltySupremum supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Structural Sample Risk cannot be computedEmpiricalPenaltySupremum supremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Structural Sample Risk cannot be computeddouble regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computeddouble regularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computedEmpiricalPenaltySupremum supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Regularized Sample Risk cannot be computedEmpiricalPenaltySupremum supremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Supremum Regularized Sample Risk cannot be computed