public class ApproximateLipschitzLossLearner extends LipschitzLossLearner
Constructor and Description |
---|
ApproximateLipschitzLossLearner(NormedRxToNormedR1Finite funcClassRxToR1,
CoveringNumberLossBound cdpb,
RegularizationFunction regularizerFunc,
double dblLipschitzSlope,
double dblLipschitzFloor)
ApproximateLipschitzLossLearner Constructor
|
Modifier and Type | Method and Description |
---|---|
double |
lipschitzFloor()
Retrieve the Lipschitz Floor
|
double |
lossSampleCoveringNumber(GeneralizedValidatedVector gvvi,
double dblEpsilon,
boolean bSupremum)
Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based
|
empiricalLoss, empiricalLoss, empiricalRisk, empiricalRisk, lipschitzSlope
coveringLossBoundEvaluator, functionClass, genericCoveringProbabilityBound, genericCoveringProbabilityBound, genericCoveringSampleSize, genericCoveringSampleSize, regressorCoveringProbabilityBound, regressorCoveringProbabilityBound, regressorCoveringSampleSize, regressorCoveringSampleSize, regularizedLoss, regularizedLoss, regularizedRisk, regularizedRisk, regularizerFunction, structuralLoss, structuralLoss, structuralRisk, structuralRisk, supremumEmpiricalLoss, supremumEmpiricalRisk, supremumEmpiricalRisk, supremumRegularizedLoss, supremumRegularizedRisk, supremumRegularizedRisk, supremumStructuralLoss, supremumStructuralRisk, supremumStructuralRisk
public ApproximateLipschitzLossLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, double dblLipschitzSlope, double dblLipschitzFloor) throws java.lang.Exception
funcClassRxToR1
- R^x To R^1 Function Classcdpb
- The Covering Number based Deviation Upper Probability Bound GeneratorregularizerFunc
- The Regularizer FunctiondblLipschitzSlope
- The Lipschitz Slope BounddblLipschitzFloor
- The Lipschitz Floor Boundjava.lang.Exception
- Thrown if the Inputs are Invalidpublic double lipschitzFloor()
public double lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
EmpiricalLearningMetricEstimator
lossSampleCoveringNumber
in interface EmpiricalLearningMetricEstimator
lossSampleCoveringNumber
in class LipschitzLossLearner
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Inputs are Invalid