public abstract class GeneralizedLearner extends java.lang.Object implements EmpiricalLearningMetricEstimator
Constructor and Description |
---|
GeneralizedLearner(NormedRxToNormedR1Finite funcClassRxToR1,
CoveringNumberLossBound funcClassCNLB,
RegularizationFunction regularizerFunc)
GeneralizedLearner Constructor
|
Modifier and Type | Method and Description |
---|---|
CoveringNumberLossBound |
coveringLossBoundEvaluator()
Retrieve the Covering Number based Deviation Upper Probability Bound Generator
|
NormedRxToNormedR1Finite |
functionClass()
Retrieve the Underlying Learner Function Class
|
double |
genericCoveringProbabilityBound(GeneralizedValidatedVector gvvi,
int iSampleSize,
double dblEpsilon,
boolean bSupremum)
Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
the Empirical and the Population Means using the Function Class Supremum Covering Number for
General-Purpose Learning
|
double |
genericCoveringProbabilityBound(int iSampleSize,
double dblEpsilon,
boolean bSupremum)
Compute the Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the
Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
|
double |
genericCoveringSampleSize(double dblEpsilon,
double dblDeviationUpperProbabilityBound,
boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
the Specified Empirical Deviation using the Covering Number Convergence Bounds.
|
double |
genericCoveringSampleSize(GeneralizedValidatedVector gvvi,
double dblEpsilon,
double dblDeviationUpperProbabilityBound,
boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
the Specified Empirical Deviation using the Covering Number Convergence Bounds.
|
double |
regressorCoveringProbabilityBound(GeneralizedValidatedVector gvvi,
int iSampleSize,
double dblEpsilon,
boolean bSupremum)
Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
the Empirical and the Population Means using the Function Class Supremum Covering Number for
Regression Learning
|
double |
regressorCoveringProbabilityBound(int iSampleSize,
double dblEpsilon,
boolean bSupremum)
Compute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
Population Means using the Function Class Supremum Covering Number for Regression Learning
|
double |
regressorCoveringSampleSize(double dblEpsilon,
double dblDeviationUpperProbabilityBound,
boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
Learning.
|
double |
regressorCoveringSampleSize(GeneralizedValidatedVector gvvi,
double dblEpsilon,
double dblDeviationUpperProbabilityBound,
boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
Learning.
|
double |
regularizedLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)
|
double |
regularizedLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)
|
double |
regularizedRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
double |
regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
RegularizationFunction |
regularizerFunction()
Retrieve the Regularizer Function
|
double |
structuralLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvvi)
Compute the Structural Sample Loss
|
double |
structuralLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvvi)
Compute the Structural Sample Loss
|
double |
structuralRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
double |
structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
EmpiricalPenaltySupremum |
supremumEmpiricalLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Loss
|
EmpiricalPenaltySupremum |
supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
supremumRegularizedLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Loss
|
EmpiricalPenaltySupremum |
supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
supremumStructuralLoss(GeneralizedValidatedVector gvviX)
Compute the Supremum Structural Sample Loss
|
EmpiricalPenaltySupremum |
supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
EmpiricalPenaltySupremum |
supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
empiricalLoss, empiricalLoss, empiricalRisk, empiricalRisk, lossSampleCoveringNumber
public GeneralizedLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound funcClassCNLB, RegularizationFunction regularizerFunc) throws java.lang.Exception
funcClassRxToR1
- R^x To R^1 Function ClassfuncClassCNLB
- The Function Class Covering Number based Deviation Upper Probability Bound
GeneratorregularizerFunc
- The Regularizer Functionjava.lang.Exception
- Thrown if the Inputs are Invalidpublic NormedRxToNormedR1Finite functionClass()
EmpiricalLearningMetricEstimator
functionClass
in interface EmpiricalLearningMetricEstimator
public RegularizationFunction regularizerFunction()
EmpiricalLearningMetricEstimator
regularizerFunction
in interface EmpiricalLearningMetricEstimator
public EmpiricalPenaltySupremum supremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumEmpiricalLoss
in interface EmpiricalLearningMetricEstimator
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic double structuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi) throws java.lang.Exception
EmpiricalLearningMetricEstimator
structuralLoss
in interface EmpiricalLearningMetricEstimator
funcLearnerR1ToR1
- The R^1 To R^1 Learner Functiongvvi
- The Validated Predictor Instancejava.lang.Exception
- Thrown if the Structural Loss cannot be computedpublic double structuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi) throws java.lang.Exception
EmpiricalLearningMetricEstimator
structuralLoss
in interface EmpiricalLearningMetricEstimator
funcLearnerRdToR1
- The R^d To R^1 Learner Functiongvvi
- The Validated Predictor Instancejava.lang.Exception
- Thrown if the Structural Loss cannot be computedpublic EmpiricalPenaltySupremum supremumStructuralLoss(GeneralizedValidatedVector gvviX)
EmpiricalLearningMetricEstimator
supremumStructuralLoss
in interface EmpiricalLearningMetricEstimator
gvviX
- The Validated Predictor Instancepublic double regularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
regularizedLoss
in interface EmpiricalLearningMetricEstimator
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Loss cannot be computedpublic double regularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
regularizedLoss
in interface EmpiricalLearningMetricEstimator
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Loss cannot be computedpublic EmpiricalPenaltySupremum supremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumRegularizedLoss
in interface EmpiricalLearningMetricEstimator
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic EmpiricalPenaltySupremum supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumEmpiricalRisk
in interface EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic EmpiricalPenaltySupremum supremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumEmpiricalRisk
in interface EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic double structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
structuralRisk
in interface EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Structural Risk cannot be computedpublic double structuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
structuralRisk
in interface EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Structural Risk cannot be computedpublic EmpiricalPenaltySupremum supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumStructuralRisk
in interface EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic EmpiricalPenaltySupremum supremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumStructuralRisk
in interface EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic double regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
regularizedRisk
in interface EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computedpublic double regularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
regularizedRisk
in interface EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computedpublic EmpiricalPenaltySupremum supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumRegularizedRisk
in interface EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic EmpiricalPenaltySupremum supremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalLearningMetricEstimator
supremumRegularizedRisk
in interface EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancepublic CoveringNumberLossBound coveringLossBoundEvaluator()
public double genericCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
iSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Upper Probability Bound cannot be computedpublic double genericCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.Exception
dblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Minimum Sample Size cannot be computedpublic double genericCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
gvvi
- The Validated Instance Vector SequenceiSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Upper Probability Bound cannot be computedpublic double genericCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.Exception
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Minimum Sample Size cannot be computedpublic double regressorCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
iSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Upper Probability Bound cannot be computedpublic double regressorCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.Exception
dblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Minimum Sample Size cannot be computedpublic double regressorCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
gvvi
- The Validated Instance Vector SequenceiSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Upper Probability Bound cannot be computedpublic double regressorCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.Exception
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Minimum Sample Size cannot be computed