public class L1LossLearner extends GeneralizedLearner
Constructor and Description |
---|
L1LossLearner(NormedRxToNormedR1Finite funcClassRxToR1,
CoveringNumberLossBound cdpb,
RegularizationFunction regularizerFunc,
MeasureConcentrationExpectationBound cleb)
L1LossLearner Constructor
|
Modifier and Type | Method and Description |
---|---|
MeasureConcentrationExpectationBound |
concentrationLossBoundEvaluator()
Retrieve the Concentration of Measure based Loss Expectation Upper Bound Evaluator Instance
|
double |
empiricalLoss(R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Loss
|
double |
empiricalLoss(RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Loss
|
double |
empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
lossSampleCoveringNumber(GeneralizedValidatedVector gvvi,
double dblEpsilon,
boolean bSupremum)
Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based
|
coveringLossBoundEvaluator, functionClass, genericCoveringProbabilityBound, genericCoveringProbabilityBound, genericCoveringSampleSize, genericCoveringSampleSize, regressorCoveringProbabilityBound, regressorCoveringProbabilityBound, regressorCoveringSampleSize, regressorCoveringSampleSize, regularizedLoss, regularizedLoss, regularizedRisk, regularizedRisk, regularizerFunction, structuralLoss, structuralLoss, structuralRisk, structuralRisk, supremumEmpiricalLoss, supremumEmpiricalRisk, supremumEmpiricalRisk, supremumRegularizedLoss, supremumRegularizedRisk, supremumRegularizedRisk, supremumStructuralLoss, supremumStructuralRisk, supremumStructuralRisk
public L1LossLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, MeasureConcentrationExpectationBound cleb) throws java.lang.Exception
funcClassRxToR1
- R^x To R^1 Function Classcdpb
- The Covering Number based Deviation Upper Probability Bound GeneratorregularizerFunc
- The Regularizer Functioncleb
- The Concentration of Measure based Loss Expectation Upper Bound Evaluatorjava.lang.Exception
- Thrown if the Inputs are Invalidpublic MeasureConcentrationExpectationBound concentrationLossBoundEvaluator()
public double lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
EmpiricalLearningMetricEstimator
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metricjava.lang.Exception
- Thrown if the Inputs are Invalidpublic double empiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Loss cannot be computedpublic double empiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Loss cannot be computedpublic double empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computedpublic double empiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
EmpiricalLearningMetricEstimator
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instancejava.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computed