public abstract class RdDecisionFunction extends RdToR1
Constructor and Description |
---|
RdDecisionFunction(RdGeneralizedVector rdPredictor,
RdNormed rdInverseMargin,
double[] adblInverseMarginWeight,
double dblB)
RdDecisionFunction Constructor
|
Modifier and Type | Method and Description |
---|---|
short |
classify(double[] adblX)
Classify the Specified Multi-dimensional Point
|
DecisionFunctionOperatorBounds |
entropyNumberUpperBounds(DiagonalScalingOperator dsoFactorizer,
double dblFeatureSpaceMaureyConstant)
Compute the Entropy Number Upper Bounds Instance for the Specified Inputs
|
RdNormed |
inverseMarginSpace()
Retrieve the Inverse Margin Weight Metric Vector Space
|
double[] |
inverseMarginWeights()
Retrieve the Decision Kernel Weights
|
double |
logEntropyNumberAsymptote(DiagonalScalingOperator dsoFactorizer)
Compute the Decision Function's Asymptotic Exponent for the Entropy Number
|
double |
offset()
Retrieve the Offset
|
abstract boolean |
optimizeClassificationHyperplane(short[] asEmpirical,
double dblMargin,
double dblInverseWidthNormConstraint)
Optimize the Hyper-plane for the Purposes of Classification
|
abstract boolean |
optimizeRegressionHyperplane(double[] adblEmpirical,
double dblMargin,
double dblInverseWidthNormConstraint)
Optimize the Hyper-plane for the Purposes of Regression
|
RdGeneralizedVector |
predictorSpace()
Retrieve the Input Predictor Metric Vector Space
|
double |
regress(double[] adblX)
Regress on the Specified Multi-dimensional Point
|
derivative, differential, dimension, evaluate, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
public RdDecisionFunction(RdGeneralizedVector rdPredictor, RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB) throws java.lang.Exception
rdPredictor
- The R^d Metric Input Predictor SpacerdInverseMargin
- The Inverse Margin Weights R^d SpaceadblInverseMarginWeight
- Array of Inverse Margin WeightsdblB
- The Kernel Offsetjava.lang.Exception
- Thrown if the Inputs are Invalidpublic RdGeneralizedVector predictorSpace()
public RdNormed inverseMarginSpace()
public double[] inverseMarginWeights()
public double offset()
public short classify(double[] adblX) throws java.lang.Exception
adblX
- The Multi-dimensional Input Pointjava.lang.Exception
- Thrown if the Inputs are Invalidpublic double regress(double[] adblX) throws java.lang.Exception
adblX
- The Multi-dimensional Input Pointjava.lang.Exception
- Thrown if the Inputs are Invalidpublic DecisionFunctionOperatorBounds entropyNumberUpperBounds(DiagonalScalingOperator dsoFactorizer, double dblFeatureSpaceMaureyConstant)
dsoFactorizer
- The Factorizing Diagonal Scaling OperatordblFeatureSpaceMaureyConstant
- The Feature Space Maurey Constantpublic double logEntropyNumberAsymptote(DiagonalScalingOperator dsoFactorizer) throws java.lang.Exception
dsoFactorizer
- The Factorizing Diagonal Scaling Operatorjava.lang.Exception
- Thrown if the Asymptotoc Exponent cannot be computedpublic abstract boolean optimizeRegressionHyperplane(double[] adblEmpirical, double dblMargin, double dblInverseWidthNormConstraint)
adblEmpirical
- The Empirical Observation ArraydblMargin
- The Optimization MargindblInverseWidthNormConstraint
- The Inverse Width Norm Constraintpublic abstract boolean optimizeClassificationHyperplane(short[] asEmpirical, double dblMargin, double dblInverseWidthNormConstraint)
asEmpirical
- The Empirical Observation ArraydblMargin
- The Optimization MargindblInverseWidthNormConstraint
- The Inverse Width Norm Constraint