public abstract class KernelRdDecisionFunction extends RdDecisionFunction
Constructor and Description |
---|
KernelRdDecisionFunction(RdNormed rdInverseMargin,
double[] adblInverseMarginWeight,
double dblB,
SymmetricRdToNormedRdKernel kernel,
double[][] aadblKernelPredictorPivot)
KernelRdDecisionFunction Constructor
|
Modifier and Type | Method and Description |
---|---|
double |
evaluate(double[] adblX)
Evaluate for the given Input Variates
|
SymmetricRdToNormedRdKernel |
kernel()
Retrieve the Decision Kernel
|
double[][] |
kernelPredictorPivot()
Retrieve the Decision Kernel Predictor Pivot Nodes
|
classify, entropyNumberUpperBounds, inverseMarginSpace, inverseMarginWeights, logEntropyNumberAsymptote, offset, optimizeClassificationHyperplane, optimizeRegressionHyperplane, predictorSpace, regress
derivative, differential, dimension, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
public KernelRdDecisionFunction(RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB, SymmetricRdToNormedRdKernel kernel, double[][] aadblKernelPredictorPivot) throws java.lang.Exception
rdInverseMargin
- The Inverse Margin Weights R^d SpaceadblInverseMarginWeight
- Array of Inverse Margin WeightsdblB
- The Kernel Offsetkernel
- The KernelaadblKernelPredictorPivot
- Array of the Kernel R^d Predictor Pivot Nodesjava.lang.Exception
- Thrown if the Inputs are Invalidpublic double evaluate(double[] adblX) throws java.lang.Exception
RdToR1
public SymmetricRdToNormedRdKernel kernel()
public double[][] kernelPredictorPivot()