public abstract class LinearRdDecisionFunction extends RdDecisionFunction
Constructor and Description |
---|
LinearRdDecisionFunction(RdGeneralizedVector gmvsPredictor,
RdNormed rmnsInverseMargin,
double[] adblInverseMarginWeight,
double dblB)
LinearRdDecisionFunction Constructor
|
Modifier and Type | Method and Description |
---|---|
double |
evaluate(double[] adblX)
Evaluate for the given Input Variates
|
classify, entropyNumberUpperBounds, inverseMarginSpace, inverseMarginWeights, logEntropyNumberAsymptote, offset, optimizeClassificationHyperplane, optimizeRegressionHyperplane, predictorSpace, regress
derivative, differential, dimension, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
public LinearRdDecisionFunction(RdGeneralizedVector gmvsPredictor, RdNormed rmnsInverseMargin, double[] adblInverseMarginWeight, double dblB) throws java.lang.Exception
gmvsPredictor
- The R^d Metric Input Predictor SpacermnsInverseMargin
- The Inverse Margin Weights R^d L2 SpaceadblInverseMarginWeight
- Array of Inverse Margin WeightsdblB
- The Offsetjava.lang.Exception
- Thrown if the Inputs are Invalidpublic double evaluate(double[] adblX) throws java.lang.Exception
RdToR1