Package org.drip.dynamics.meanreverting
Class R1CIRStochasticEvolver
java.lang.Object
org.drip.dynamics.process.R1StochasticEvolver
org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
org.drip.dynamics.meanreverting.R1CIRStochasticEvolver
public class R1CIRStochasticEvolver extends R1CKLSStochasticEvolver
R1CIRStochasticEvolver implements the R1 Cos-Ingersoll-Ross Stochastic Evolver. The
References are:
- Doob, J. L. (1942): The Brownian Movement and Stochastic Equations Annals of Mathematics 43 (2) 351-369
- Gardiner, C. W. (2009): Stochastic Methods: A Handbook for the Natural and Social Sciences 4th Edition Springer-Verlag
- Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
- Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus 2nd Edition Springer-Verlag
- Risken, H., and F. Till (1996): The Fokker-Planck Equation – Methods of Solution and Applications Springer
- Module = Product Core Module
- Library = Fixed Income Analytics
- Project = HJM, Hull White, LMM, and SABR Dynamic Evolution Models
- Package = Mean Reverting Stochastic Process Dynamics
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1CIRStochasticEvolver(double meanReversionSpeed, double meanReversionLevel, double volatilityCoefficient, R1StochasticDriver r1StochasticDriver)R1CIRStochasticEvolver Constructor -
Method Summary
Modifier and Type Method Description booleanevolutionStrictlyPositive()Indicate it the Evolution includes Zero, or is strictly PositiveR1FokkerPlanckCIRfokkerPlanckGenerator()Construct the Fokker Planck PDF Generator corresponding to R1 Stochastic EvolverR1NonCentralfutureValueDistribution(double r0, double t)Generate the Future Value Distribution at Time tdoublemean(double x0, double t)Compute the Expected Value of x at a time t from a Starting Value x0PopulationCentralMeasuressteadyStatePopulationCentralMeasures(double x0)Generate the Steady State Population Central MeasuresPopulationCentralMeasurestemporalPopulationCentralMeasures(double x0, double t)Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDFdoubletimeVariance(double x0, double t)Compute the Time Variance of x across at a Time Value tstatic R1CIRStochasticEvolverWiener(double meanReversionSpeed, double meanReversionLevel, double volatility, double timeWidth)Construct a Weiner Instance of R1CIRStochasticEvolver ProcessMethods inherited from class org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
cklsParameters, WienerMethods inherited from class org.drip.dynamics.process.R1StochasticEvolver
driftFunction, evolve, stochasticDriver, volatilityFunctionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1CIRStochasticEvolver
public R1CIRStochasticEvolver(double meanReversionSpeed, double meanReversionLevel, double volatilityCoefficient, R1StochasticDriver r1StochasticDriver) throws java.lang.ExceptionR1CIRStochasticEvolver Constructor- Parameters:
meanReversionSpeed- The Mean Reversion SpeedmeanReversionLevel- The Mean Reversion LevelvolatilityCoefficient- The Volatility Coefficientr1StochasticDriver- The Stochastic Driver- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
Wiener
public static R1CIRStochasticEvolver Wiener(double meanReversionSpeed, double meanReversionLevel, double volatility, double timeWidth)Construct a Weiner Instance of R1CIRStochasticEvolver Process- Parameters:
meanReversionSpeed- The Mean Reversion SpeedmeanReversionLevel- The Mean Reversion Levelvolatility- The VolatilitytimeWidth- Wiener Time Width- Returns:
- Weiner Instance of R1CIRStochasticEvolver Process
-
evolutionStrictlyPositive
public boolean evolutionStrictlyPositive()Indicate it the Evolution includes Zero, or is strictly Positive- Returns:
- TRUE - Evoltuion is Strictly Positive
-
mean
public double mean(double x0, double t) throws java.lang.ExceptionCompute the Expected Value of x at a time t from a Starting Value x0- Parameters:
x0- Starting Variatet- Time- Returns:
- Expected Value of x
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
timeVariance
public double timeVariance(double x0, double t) throws java.lang.ExceptionCompute the Time Variance of x across at a Time Value t- Parameters:
x0- Starting Variatet- Time t- Returns:
- Time Variance of x
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
temporalPopulationCentralMeasures
Description copied from class:R1StochasticEvolverEstimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDF- Overrides:
temporalPopulationCentralMeasuresin classR1StochasticEvolver- Parameters:
x0- The X Anchor for the Delta Functiont- The Forward Time- Returns:
- The Temporal Central Measures for the Underlier
-
steadyStatePopulationCentralMeasures
Description copied from class:R1StochasticEvolverGenerate the Steady State Population Central Measures- Overrides:
steadyStatePopulationCentralMeasuresin classR1StochasticEvolver- Parameters:
x0- Starting Variate- Returns:
- The Steady State Population Central Measures
-
futureValueDistribution
Description copied from class:R1StochasticEvolverGenerate the Future Value Distribution at Time t- Overrides:
futureValueDistributionin classR1StochasticEvolver- Parameters:
r0- Starting Variatet- Time- Returns:
- The Future Value Distribution
-
fokkerPlanckGenerator
Description copied from class:R1StochasticEvolverConstruct the Fokker Planck PDF Generator corresponding to R1 Stochastic Evolver- Overrides:
fokkerPlanckGeneratorin classR1CKLSStochasticEvolver- Returns:
- The Fokker Planck PDF Generator corresponding to R1 Stochastic Evolver
-