-
Methods in org.drip.learning.rxtor1 that return EmpiricalPenaltySupremum
Modifier and Type |
Method |
Description |
EmpiricalPenaltySupremum |
EmpiricalPenaltySupremumEstimator.supremum(GeneralizedValidatedVector gvviX) |
Compute the Empirical Penalty Supremum for the specified R^1/R^d Input Space
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumEmpiricalLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Empirical Sample Loss
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumEmpiricalLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
EmpiricalPenaltySupremumEstimator.supremumR1(GeneralizedValidatedVector gvviX) |
Compute the Empirical Penalty Supremum for the specified R^1 Input Space
|
EmpiricalPenaltySupremum |
EmpiricalPenaltySupremumEstimator.supremumRd(GeneralizedValidatedVector gvviX) |
Compute the Empirical Penalty Supremum for the specified R^d Input Space
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumRegularizedLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Regularized Sample Loss
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumRegularizedLoss(GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumStructuralLoss(GeneralizedValidatedVector gvviX) |
Compute the Supremum Structural Sample Loss
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumStructuralLoss(GeneralizedValidatedVector gvviX) |
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Structural Sample Risk
|
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
Compute the Supremum Structural Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
|