Uses of Class
org.drip.numerical.complex.C1Cartesian
| Package | Description |
|---|---|
| org.drip.function.definition |
Function Implementation Ancillary Support Objects
|
| org.drip.numerical.complex |
Implementation of Complex Number Suite
|
| org.drip.numerical.fourier |
Fourier - Rotation Counter, Phase Adjuster
|
| org.drip.specialfunction.definition |
Definition of Special Function Estimators
|
| org.drip.specialfunction.digamma |
Estimation Techniques for Digamma Function
|
| org.drip.specialfunction.group |
Special Function Singularity Solution Group
|
| org.drip.specialfunction.hankel |
Ordered Hankel Function Variant Estimators
|
-
Uses of C1Cartesian in org.drip.function.definition
Methods in org.drip.function.definition that return C1Cartesian Modifier and Type Method Description C1CartesianR2ToZ1. evaluate(double x, double y)Evaluate for the given variate Pair -
Uses of C1Cartesian in org.drip.numerical.complex
Methods in org.drip.numerical.complex that return C1Cartesian Modifier and Type Method Description C1CartesianC1CartesianPhiAB. a()Retrieve theaParameterC1CartesianC1CartesianPhiAlphaBetaTheta. a()Retrieve theaParameterC1CartesianC1Cartesian. add(C1Cartesian cartesianC1)Add the Input Cartesian C1 to the current Instancestatic C1CartesianC1Util. Add(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Add the 2 Complex NumbersC1CartesianC1CartesianPhiAB. b()Retrieve thebParameterC1CartesianC1CartesianPhiAlphaBetaTheta. b()Retrieve thebParameterC1Cartesian[][]C1Square. c1Grid()Retrieve C1 ArrayC1CartesianC1Cartesian. conjugate()Compute Conjugate of the Complex NumberC1CartesianC1Cartesian. divide(C1Cartesian cartesianC1)Divide the Current Instance by the Input Cartesian C1static C1CartesianC1Util. Divide(C1Cartesian numeratorC1, C1Cartesian denominatorC1)Divide the Numerator Complex Number by the Denominator Complex NumberC1CartesianC1Cartesian. exponentiate()Exponentiate the Complex Numberstatic C1CartesianC1Util. Exponentiate(C1Cartesian complexNumber)Exponentiate the Complex Numberstatic C1CartesianC1Cartesian. FromPolar(double r, double theta)Construct the Complex Number from its Polar RepresentationC1CartesianC1Cartesian. logarithm()Compute Logarithm of the Complex Numberstatic C1CartesianC1Util. Logarithm(C1Cartesian complexNumber)Compute Logarithm of the Complex Numberstatic C1CartesianC1Util. Multiply(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Multiply the 2 Complex NumbersC1CartesianC1Cartesian. product(C1Cartesian cartesianC1)Multiply the Input Cartesian C1 with the current Instancestatic C1Cartesian[][]C1MatrixUtil. Product(double[][] r1Grid, C1Cartesian[][] c1Grid)Compute the Product of the Input Matricesstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1Grid, double[][] r1Grid)Compute the Product of the Input Matricesstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1Grid, C1Cartesian c1)Compute the Product of the Input Matrix and the Complex Numberstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input MatricesC1CartesianC1Cartesian. scale(double scale)Scale the Complex Number with the factorC1CartesianC1Cartesian. scale(C1Cartesian scale)Scale the Complex Number with the factorstatic C1CartesianC1Util. Scale(C1Cartesian cartesianC1, double scale)Scale the Complex Number with the factorstatic C1CartesianC1Util. Scale(C1Cartesian cartesianC1, C1Cartesian cartesianC1Scale)Scale the Complex Number with the factorC1CartesianC1Cartesian. square()Compute the Square of the Complex Numberstatic C1CartesianC1Util. Square(C1Cartesian c1)Square the Complex NumberC1CartesianC1Cartesian. squareRoot()Compute the Square Root of the Complex Numberstatic C1CartesianC1Util. SquareRoot(C1Cartesian complexNumber)Compute the Square Root of the Complex NumberC1CartesianC1Cartesian. subtract(C1Cartesian cartesianC1)Subtract the Input Cartesian C1 from the current Instancestatic C1CartesianC1Util. Subtract(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Subtract the Second Complex Number from the FirstC1Cartesian[][]C1Square. transpose()Transpose the Square Matrixstatic C1Cartesian[][]C1MatrixUtil. Transpose(C1Cartesian[][] c1Grid)Transpose the specified C1 Square Matrixstatic C1CartesianC1Cartesian. UnitImaginary()Construct a Unit Imaginary Complex Numberstatic C1CartesianC1Cartesian. UnitReal()Construct a Unit Real Complex Numberstatic C1CartesianC1Util. UnsafeAdd(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Add the 2 Complex Numbers.static C1CartesianC1Util. UnsafeDivide(C1Cartesian numeratorC1, C1Cartesian denominatorC1)Divide the Numerator Complex Number by the Denominator Complex Number.static C1CartesianC1Util. UnsafeExponentiate(C1Cartesian complexNumber)Exponentiate the Complex Number.static C1CartesianC1Util. UnsafeLogarithm(C1Cartesian complexNumber)Compute Logarithm of the Complex Number.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(double[][] r1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input Matrices.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1GridA, double[][] r1GridB)Compute the Product of the Input Matrices.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1Grid, C1Cartesian c1)Compute the Product of the Input Matrix and the Complex Number.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input Matrices.static C1CartesianC1Util. UnsafeProduct(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Multiply the 2 Complex Numbers.static C1CartesianC1Util. UnsafeScale(C1Cartesian cartesianC1, double scale)Scale the Complex Number with the factor.static C1CartesianC1Util. UnsafeScale(C1Cartesian cartesianC1, C1Cartesian cartesianC1Scale)Scale the Complex Number with the factor.static C1CartesianC1Util. UnsafeSquare(C1Cartesian c1)Square the Complex Number.static C1CartesianC1Util. UnsafeSquareRoot(C1Cartesian complexNumber)Compute the Square Root of the Complex Number.static C1CartesianC1Util. UnsafeSubtract(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Subtract the Second Complex Number from the First.static C1Cartesian[][]C1MatrixUtil. UnsafeTranspose(C1Cartesian[][] c1Grid)Transpose the specified C1 Square Matrix.static C1CartesianC1Cartesian. Zero()Construct a "Zero" Complex NumberMethods in org.drip.numerical.complex with parameters of type C1Cartesian Modifier and Type Method Description C1CartesianC1Cartesian. add(C1Cartesian cartesianC1)Add the Input Cartesian C1 to the current Instancestatic C1CartesianC1Util. Add(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Add the 2 Complex Numbersstatic doubleC1MatrixUtil. Determinant(C1Cartesian[][] c1Grid)Determinant of the Input MatrixC1CartesianC1Cartesian. divide(C1Cartesian cartesianC1)Divide the Current Instance by the Input Cartesian C1static C1CartesianC1Util. Divide(C1Cartesian numeratorC1, C1Cartesian denominatorC1)Divide the Numerator Complex Number by the Denominator Complex NumberdoubleC1Cartesian. dotProduct(C1Cartesian other)Dot Product of with the "Other"static doubleC1Util. DotProduct(C1Cartesian a, C1Cartesian e)Dot Product of Complex Numbers A and Estatic C1CartesianC1Util. Exponentiate(C1Cartesian complexNumber)Exponentiate the Complex Numberstatic booleanC1MatrixUtil. IsGridValid(C1Cartesian[][] c1Grid)Indicate the C1 Grid is Validstatic booleanC1MatrixUtil. IsUnitary(C1Cartesian[][] c1Grid)Indicate if the Input Matrix is Unitarystatic booleanC1MatrixUtil. IsVectorValid(C1Cartesian[] c1Vector)Indicate the C1 Vector is Validstatic C1CartesianC1Util. Logarithm(C1Cartesian complexNumber)Compute Logarithm of the Complex Numberstatic C1CartesianC1Util. Multiply(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Multiply the 2 Complex NumbersC1CartesianC1Cartesian. product(C1Cartesian cartesianC1)Multiply the Input Cartesian C1 with the current InstanceC1SquareC1Square. product(C1Cartesian c1)Compute the Product of the Input Matrix and the Complex Numberstatic C1Cartesian[][]C1MatrixUtil. Product(double[][] r1Grid, C1Cartesian[][] c1Grid)Compute the Product of the Input Matricesstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1Grid, double[][] r1Grid)Compute the Product of the Input Matricesstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1Grid, C1Cartesian c1)Compute the Product of the Input Matrix and the Complex Numberstatic C1Cartesian[][]C1MatrixUtil. Product(C1Cartesian[][] c1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input MatricesC1CartesianC1Cartesian. scale(C1Cartesian scale)Scale the Complex Number with the factorstatic C1CartesianC1Util. Scale(C1Cartesian cartesianC1, double scale)Scale the Complex Number with the factorstatic C1CartesianC1Util. Scale(C1Cartesian cartesianC1, C1Cartesian cartesianC1Scale)Scale the Complex Number with the factorstatic C1CartesianC1Util. Square(C1Cartesian c1)Square the Complex Numberstatic C1CartesianC1Util. SquareRoot(C1Cartesian complexNumber)Compute the Square Root of the Complex Numberstatic C1CartesianPhiABC1CartesianPhiAB. Standard(C1Cartesian a, C1Cartesian b, double phi)Construct a Standard Instance of C1CartesianPhiABstatic C1SquareC1Square. Standard(C1Cartesian[][] c1Grid)Construct a Standard Instance of C1Squarestatic UnitaryMatrixUnitaryMatrix. Standard(C1Cartesian[][] c1Grid)Construct a Standard Instance of the Unitary MatrixC1CartesianC1Cartesian. subtract(C1Cartesian cartesianC1)Subtract the Input Cartesian C1 from the current Instancestatic C1CartesianC1Util. Subtract(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Subtract the Second Complex Number from the Firststatic C1Cartesian[][]C1MatrixUtil. Transpose(C1Cartesian[][] c1Grid)Transpose the specified C1 Square Matrixstatic C1CartesianC1Util. UnsafeAdd(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Add the 2 Complex Numbers.static doubleC1MatrixUtil. UnsafeDeterminant(C1Cartesian[][] c1Grid)Determinant of the Input Matrix.static C1CartesianC1Util. UnsafeDivide(C1Cartesian numeratorC1, C1Cartesian denominatorC1)Divide the Numerator Complex Number by the Denominator Complex Number.static doubleC1Util. UnsafeDotProduct(C1Cartesian a, C1Cartesian e)Dot Product of Complex Numbers A and E.static C1CartesianC1Util. UnsafeExponentiate(C1Cartesian complexNumber)Exponentiate the Complex Number.static C1CartesianC1Util. UnsafeLogarithm(C1Cartesian complexNumber)Compute Logarithm of the Complex Number.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(double[][] r1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input Matrices.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1GridA, double[][] r1GridB)Compute the Product of the Input Matrices.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1Grid, C1Cartesian c1)Compute the Product of the Input Matrix and the Complex Number.static C1Cartesian[][]C1MatrixUtil. UnsafeProduct(C1Cartesian[][] c1GridA, C1Cartesian[][] c1GridB)Compute the Product of the Input Matrices.static C1CartesianC1Util. UnsafeProduct(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Multiply the 2 Complex Numbers.static C1CartesianC1Util. UnsafeScale(C1Cartesian cartesianC1, double scale)Scale the Complex Number with the factor.static C1CartesianC1Util. UnsafeScale(C1Cartesian cartesianC1, C1Cartesian cartesianC1Scale)Scale the Complex Number with the factor.static C1CartesianC1Util. UnsafeSquare(C1Cartesian c1)Square the Complex Number.static C1CartesianC1Util. UnsafeSquareRoot(C1Cartesian complexNumber)Compute the Square Root of the Complex Number.static C1CartesianC1Util. UnsafeSubtract(C1Cartesian firstCartesianC1, C1Cartesian secondCartesianC1)Subtract the Second Complex Number from the First.static C1Cartesian[][]C1MatrixUtil. UnsafeTranspose(C1Cartesian[][] c1Grid)Transpose the specified C1 Square Matrix. -
Uses of C1Cartesian in org.drip.numerical.fourier
Methods in org.drip.numerical.fourier that return C1Cartesian Modifier and Type Method Description static C1CartesianPhaseAdjuster. PowerLogPhaseTracker(C1Cartesian cnGNumerator, C1Cartesian cnGDenominator, int iN, int iM)Handling the Branch Switching of the Complex Power Function according Kahl-Jackel algorithm: - http://www.pjaeckel.webspace.virginmedia.com/NotSoComplexLogarithmsInTheHestonModel.pdfMethods in org.drip.numerical.fourier with parameters of type C1Cartesian Modifier and Type Method Description static C1CartesianPhaseAdjuster. PowerLogPhaseTracker(C1Cartesian cnGNumerator, C1Cartesian cnGDenominator, int iN, int iM)Handling the Branch Switching of the Complex Power Function according Kahl-Jackel algorithm: - http://www.pjaeckel.webspace.virginmedia.com/NotSoComplexLogarithmsInTheHestonModel.pdf -
Uses of C1Cartesian in org.drip.specialfunction.definition
Methods in org.drip.specialfunction.definition that return C1Cartesian Modifier and Type Method Description abstract C1CartesianHankelFirstKindEstimator. bigH1(double alpha, double z)Evaluate Hankel Function First Kind H1 given Alpha and zabstract C1CartesianHankelSecondKindEstimator. bigH2(double alpha, double z)Evaluate Hankel Function Second Kind H2 given Alpha and zC1CartesianHankelFirstKindEstimator. evaluate(double alpha, double z)C1CartesianHankelSecondKindEstimator. evaluate(double alpha, double z)C1CartesianRiccatiBesselXeeEstimator. evaluate(double alpha, double z)C1CartesianRiccatiBesselZitaEstimator. evaluate(double alpha, double z)C1CartesianSphericalHankelFirstKindEstimator. evaluate(double alpha, double z)C1CartesianSphericalHankelSecondKindEstimator. evaluate(double alpha, double z)abstract C1CartesianSphericalHankelFirstKindEstimator. smallH1(double alpha, double z)Evaluate Spherical Hankel Function First Kind h1 given Alpha and zabstract C1CartesianSphericalHankelSecondKindEstimator. smallH2(double alpha, double z)Evaluate Spherical Hankel Function Second Kind h2 given Alpha and zabstract C1CartesianRiccatiBesselXeeEstimator. xee(double alpha, double z)Evaluate Riccati-Bessel Xee Estimate given Alpha and zabstract C1CartesianRiccatiBesselZitaEstimator. zita(double alpha, double z)Evaluate Riccati-Bessel Zita Estimate given Alpha and z -
Uses of C1Cartesian in org.drip.specialfunction.digamma
Methods in org.drip.specialfunction.digamma that return C1Cartesian Modifier and Type Method Description static C1CartesianSpecialValues. UnitImaginary(int termCount)Construct the Unit Imaginary Digamma Complex Number -
Uses of C1Cartesian in org.drip.specialfunction.group
Methods in org.drip.specialfunction.group that return C1Cartesian Modifier and Type Method Description static C1Cartesian[][]MonodromyTransform2F1. G0(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)Generate the Monodromy Group Matrix G0 around the '0' Singularitystatic C1Cartesian[][]MonodromyTransform2F1. G1(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)Generate the Monodromy Group Matrix G1 around the '1' Singularity -
Uses of C1Cartesian in org.drip.specialfunction.hankel
Methods in org.drip.specialfunction.hankel that return C1Cartesian Modifier and Type Method Description C1CartesianBigH1FromBigJ. bigH1(double alpha, double z)C1CartesianBigH1FromBigJBigY. bigH1(double alpha, double z)C1CartesianBigH2FromBigJBigY. bigH1(double alpha, double z)C1CartesianBigH2FromBigJ. bigH2(double alpha, double z)C1CartesianSmallH1. smallH1(double alpha, double z)C1CartesianSmallH2. smallH2(double alpha, double z)C1CartesianXeeFromBigH1. xee(double alpha, double z)C1CartesianXeeFromSC. xee(double alpha, double z)C1CartesianXeeFromSmallH1. xee(double alpha, double z)C1CartesianZitaFromBigH2. zita(double alpha, double z)C1CartesianZitaFromSC. zita(double alpha, double z)C1CartesianZitaFromSmallH2. zita(double alpha, double z)