Package | Description |
---|---|
org.drip.learning.regularization | |
org.drip.learning.rxtor1 |
Modifier and Type | Method and Description |
---|---|
double |
RegularizerR1ToR1.structuralRisk(R1R1 distR1R1,
R1ToR1 funcR1ToR1,
double[] adblX,
double[] adblY)
Compute the Regularization Sample Structural Loss
|
double |
RegularizerR1ContinuousToR1Continuous.structuralRisk(R1R1 distR1R1,
R1ToR1 funcR1ToR1,
double[] adblX,
double[] adblY) |
double |
RegularizerR1CombinatorialToR1Continuous.structuralRisk(R1R1 distR1R1,
R1ToR1 funcR1ToR1,
double[] adblX,
double[] adblY) |
Modifier and Type | Method and Description |
---|---|
double |
LpLossLearner.empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
LipschitzLossLearner.empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
L1LossLearner.empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.empiricalRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
GeneralizedLearner.regularizedRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.regularizedRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
double |
GeneralizedLearner.structuralRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.structuralRisk(R1R1 distR1R1,
R1ToR1 funcLearnerR1ToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumEmpiricalRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumRegularizedRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumStructuralRisk(R1R1 distR1R1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
Constructor and Description |
---|
EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode,
EmpiricalLearningMetricEstimator elme,
GeneralizedValidatedVector gvviY,
R1R1 distR1R1,
RdR1 distRdR1)
EmpiricalPenaltySupremumEstimator Constructor
|