Uses of Class
org.drip.measure.continuous.R1R1
Package | Description |
---|---|
org.drip.learning.regularization |
Statistical Learning Empirical Loss Regularizer
|
org.drip.learning.rxtor1 |
Statistical Learning Empirical Loss Penalizer
|
-
Uses of R1R1 in org.drip.learning.regularization
Methods in org.drip.learning.regularization with parameters of type R1R1 Modifier and Type Method Description double
RegularizerR1CombinatorialToR1Continuous. structuralRisk(R1R1 distR1R1, R1ToR1 funcR1ToR1, double[] adblX, double[] adblY)
double
RegularizerR1ContinuousToR1Continuous. structuralRisk(R1R1 distR1R1, R1ToR1 funcR1ToR1, double[] adblX, double[] adblY)
double
RegularizerR1ToR1. structuralRisk(R1R1 distR1R1, R1ToR1 funcR1ToR1, double[] adblX, double[] adblY)
Compute the Regularization Sample Structural Loss -
Uses of R1R1 in org.drip.learning.rxtor1
Methods in org.drip.learning.rxtor1 with parameters of type R1R1 Modifier and Type Method Description double
EmpiricalLearningMetricEstimator. empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Riskdouble
L1LossLearner. empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
double
LipschitzLossLearner. empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
double
LpLossLearner. empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
double
EmpiricalLearningMetricEstimator. regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)double
GeneralizedLearner. regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
double
EmpiricalLearningMetricEstimator. structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Structural Sample Riskdouble
GeneralizedLearner. structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalPenaltySupremum
EmpiricalLearningMetricEstimator. supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample RiskEmpiricalPenaltySupremum
GeneralizedLearner. supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalPenaltySupremum
EmpiricalLearningMetricEstimator. supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample RiskEmpiricalPenaltySupremum
GeneralizedLearner. supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
EmpiricalPenaltySupremum
EmpiricalLearningMetricEstimator. supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample RiskEmpiricalPenaltySupremum
GeneralizedLearner. supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Constructors in org.drip.learning.rxtor1 with parameters of type R1R1 Constructor Description EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode, EmpiricalLearningMetricEstimator elme, GeneralizedValidatedVector gvviY, R1R1 distR1R1, RdR1 distRdR1)
EmpiricalPenaltySupremumEstimator Constructor