Package | Description |
---|---|
org.drip.learning.regularization | |
org.drip.learning.rxtor1 |
Modifier and Type | Method and Description |
---|---|
double |
RegularizerRdToR1.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY)
Compute the Regularization Sample Structural Loss
|
double |
RegularizerRdContinuousToR1Continuous.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY) |
double |
RegularizerRdCombinatorialToR1Continuous.structuralRisk(RdR1 distRdR1,
RdToR1 funcRdToR1,
double[][] aadblX,
double[] adblY) |
Modifier and Type | Method and Description |
---|---|
double |
LpLossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
LipschitzLossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
L1LossLearner.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.empiricalRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Risk
|
double |
GeneralizedLearner.regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.regularizedRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)
|
double |
GeneralizedLearner.structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
double |
EmpiricalLearningMetricEstimator.structuralRisk(RdR1 distRdR1,
RdToR1 funcLearnerRdToR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Structural Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumEmpiricalRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumRegularizedRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample Risk
|
EmpiricalPenaltySupremum |
GeneralizedLearner.supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY) |
EmpiricalPenaltySupremum |
EmpiricalLearningMetricEstimator.supremumStructuralRisk(RdR1 distRdR1,
GeneralizedValidatedVector gvviX,
GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample Risk
|
Constructor and Description |
---|
EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode,
EmpiricalLearningMetricEstimator elme,
GeneralizedValidatedVector gvviY,
R1R1 distR1R1,
RdR1 distRdR1)
EmpiricalPenaltySupremumEstimator Constructor
|